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1.  Introduction 
 

The volume of solids and liquids can not be filled to 100 % by atoms owing to their 
spherical shape. A unoccupied free volume appears, its specific value Vf and fraction f can be 
calculated from  
  

Vf = V - Vocc,    f = 1 - Vocc/V        (1) 
 
where V and Vocc are the specific total and occupied volumes. Identifying Vocc with the van der 
Waals volume of atoms or molecules, VW, the total free volume can be calculated from eq. 
(1), VfW = V - VW, fW = 1 - VW/V. This empty space appears in crystals and is denoted here as 
interstitial free volume, Vfi, with its fraction fi [1]. In the following we will focus our 
discussion on polymers. For polymer crystals fi has typical values somewhat larger than in the 
most dense packing (hdp or fcc) of hard spheres, fi > 0.26. In amorphous polymers an 
additional or excess free volume appears due to the (static or dynamic) structural disorder [2-
4]. This excess free volume appears as many small holes (h) and can be calculated from eq. 
(1) assuming Vocc = Vc, Vfh = V - Vc, where Vc (= VW + Vfi) is specific volume of the 
corresponding crystal. The excess free volume fraction is fh = 1 - Vc/V. Following the 
traditional terminology we will use the symbols Vf (≡ Vfh) and f (≡ fh ≡ h) to describe the 
excess free volume and its volume fraction in the following paragraphs.  

Computer simulation of the amorphous polymer structure shows that the unoccupied, 
empty volume is a single space which is constituted by a large number of multi-
interconnected subnanometer size free volumes [5,6]. These local free volumes are of 
irregular shape and different size. If a probe molecule is inserted, the empty space decays into 
isolated small local free volumes (holes). The integral volume fraction of these "probed" holes 
decreases in an exponential-like way with the size of the probe molecule. The holes of the 
excess free volume play an important role in the polymer dynamics observed via dielectrical 
or mechanical relaxation experiments and in the diffusion of small molecules.  

Most of the traditional free-volume concepts of diffusion of small molecules in liquids 
start with the theory of Cohen and Turnbull [4], or modified versions of this. This theory, 
which is also successfully applied to polymers assumes that molecular transport occurs in a 
liquid of hard spheres by the movement of a molecule into a hole within a cage delineated by 
the immediate neighbours of the moving particle when the hole has a greater size than some 
critical value v*. The holes are formed by a redistribution of the free volume arising from the 
co-operative thermal motion of neighbour atoms. No energy in the sense of an activation 
energy is required for free volume redistribution. Applying statistical mechanics the 
distribution function of local free volumes is found to be [4] 



 
p(v) = (γ/vf)exp(-γv/vf)       (2) 

 
where v is the volume of an individual hole and vf denotes the mean free volume per 
molecule. γ is a numerical factor between 0.5 and unity, and is used to correct for the 
overlapping of holes. The probability of finding a hole of volume v* or larger is given by 
exp(-γv*/vf) which is obtained from the integration of eq. (2) from v* to ∞. 

Using this probability the average diffusion coefficient may be written as D ∼ u exp(-
γv*/vf). The diffusing molecule is assumed to move across the hole within its cage with a 
velocity u ∝ T1/2. Looking, for example, to the mobility of ions in a polymer and applying the 
Nernst-Einstein equation, the ionic conductivity σ is then given by 
 

σ = C T -1/2 exp (-γv*/vf)   .        (3) 
 

Here C and γv* are fitting parameters and are assumed to be constant. It may be assumed that 
the free volume vf increases linearly with the temperature for T > Tg,  
 

vf = (dvf/dT)(T-T0’) = αf*vm(T-T0’)      (4) 
 
where T0’ is the temperature at which the extrapolated (hypothetical equilibrium) free volume 
disappears. αf* = (1/vm)dvf/dT  is the fractional coefficient of the thermal expansion of the free 
volume and vm is the molecular volume. By substituting eq. (4) into (3), one obtains the well 
known Vogel-Tammann-Fulcher (VTF) equation, here for ionic conductivity, 
 

σ(T) =A T -1/2 exp{-B/R(T - T0)} .      (5) 
 
R is the gas constant and A, B, and T0 are fitting constants. B may be considered as a pseudo 
activation energy. T0 (Vogel temperature) is the temperature where the (extrapolated) mobility 
of ions will disappear. The eqs. (3-5) link the mobility properties with free volume properties, 
B/R = [γv*/(dvf/dT)] = (γv*/vmαf*) and T0 = T0’. An equation like eq. (5) is also used to 
describe the α- (segmental) and other relaxation processes in polymers [10]. Eqs. (3-5) tell us 
that only a fraction, exp(-γv*/vf), of the total free volume is associated with a movement and 
that this fraction depends on the type and size of the moving species (small molecules or 
polymer chain segments, for example). This point is sometimes ignored when linking 
mobility and free volume properties. We remark moreover, that the excess free volume, Vf, 
and the occupied volume that contains the interstitial free volume, Vocc = VW + Vfi, show 
different behaviour with respect to thermal expansion and isothermal compression. Thus, the 
frequently made observation of different relaxation properties for the same total volume or 
density does not necessarily contradict free volume theory. The total volume is not the 
controlling parameter of the mobility, but the correct Vf = Vf(v*,vf) is. Vf depends on the route 
in the T-P plane on which the constant V is reached.  

While the relaxation properties of amorphous polymers are usually well known [10], 
only limited information are available about the microstructure of the free volume: the hole 
dimensions, number densities and the size and shape distribution. This is mainly due to a lack 
of suitable probes for open volumes of molecular dimensions. A unique tool to probe such 
holes is the positron (positronium) annihilation spectroscopy (PALS) [7-9]. 

In molecular materials a significant fraction of the injected positrons annihilates from 
the positronium (Ps) bound state. The Ps forms either in the so called para (anti-parallel 



electron and positron spins: p-Ps) or ortho (parallel electron and positron spins: o-Ps) states 
with a relative abundance of 1:3. In vacuum, p-Ps has a lifetime of 125 ps and annihilates via 
2 γ-photons while o-Ps lives 142 ns and annihilates via 3 γ-photons [7,8].  

When within the free volume in polymers, the o-Ps has a finite probability of 
annihilating with an electron other than its bound partner (and of opposite spin) during the 
numerous collisions that it undergoes with the molecules of the surrounding material, a 
process generally known as the 'pick-off'. The result is a sharply reduced o-Ps lifetime 
depending on the frequency of collisions. The collision frequency of the Ps with the 
surrounding molecules will depend on the dimensions of the confining volume. This results in 
a highly sensitive correspondence of the o-Ps pick-off rate, and therefore the lifetime, to the 
free volume hole size [5-8]. In this paper we present a short introduction in the positron 
annihilation techniques and give an overview of applications for studying free-volume 
properties of amorphous polymers in close relation to relaxation properties.  
 
2.  The Positron Annihilation Techniques 
 

Positrons are supplied by radioactive sources such as 
22

Na with high kinetic energies 
(Fig. 1). If implanted into a solid the fast positrons slow down within a few ps due to 
ionisation and excitation of molecules. The implantation profile of positrons is an 
exponentially decreasing function exp(-αx) where α = 42 cm-1 is the positron absorption 
coefficient (in materials of density 1 g/cm3) and x is the depth where the positron is stopped. 
50, 90 and 99 % of implanted positrons are stopped at depths of 0.17, 0.55 and 1.1 mm. Thin 
polymer foils may be stacked to obtain the required thickness of sample. The free (not Ps) 

positrons annihilate via emission of two 
(almost co-linear) γ-photons of 0.51 
MeV energy. Simultaneously with the 
emission of the positron the 22Na 
nucleus emits a 1.3 MeV photon. The 
time delay between the 1.3 MeV (start γ
, positron birth) and the 0. 51 MeV 
photons (stop γ, positron annihilation), 
i. e. the lifetime of a positron, can be 
measured with a positron annihilation 
lifetime  spectrometer (PALS) using 
two fast scintillation detectors. The 

momentum distribution of e+-e- pairs can be determined either by measuring the Doppler-
broadening of the 0.51 MeV annihilation radiation (DBAR) using a Ge detector, or the 2γ 
angular correlation of annihilation radiation (ACAR, Fig. 1) [7-9]. 

While the lifetime of an individual positron may vary between 0 and ∞, the lifetime 
spectrum of an ensemble of positrons annihilating from a solitary state is a single exponential 
exp(-t/τ) where τ denotes the characteristic (mean) lifetime of positrons. As shown in Fig. 2, 
typically three lifetime components appear in amorphous polymers: 
 
 s(t) = ∑(I i/τi)exp(-t/τi),  ∑Ii = 1,     (i = 1...3).    (6) 
 
These lifetimes arise from annihilation of p-Ps (τ1 = 125 - 200 ps), free positrons (τ2 = 300 - 
400 ps) and o-Ps pick-off (τ3 = 1 - 5 ns). Only the third component (o-Ps) responds to material 
properties: τ3 = 1640 ps (c = 0, Tg = 122 °C) and 2145 ps (content of comonomer c = 75 wt-
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Figure 1. The positron experiments. 



%, Tg ≈ 0 °C, Fig. 2, [14]). Typical specimens in PALS experiments are platelets of 8x8 mm2 
in area and 1.5 mm in thickness. For each experiment, two identical samples are sandwiched 
around a 5 MBq positron source (22Na), prepared by evaporating carrier-free 22NaCl solution 
on a Kapton foil of 8 µm thickness. One experiment lasts between 1 and 10 hours depending 
on the total count.  

Following convolution of s(t) with the resolution function and subtraction of 
background and source components the spectra can be analysed by a non-linear least squares 
fit of eq. (6) to the data points Ni. A continuous lifetime distribution may be analysed using 
the Laplace-inversion routine CONTIN-PALS2 or the maximum entropy routine MELT (see 

[11] and refs. given therein). The new routine LT9.0 
assumes a log-normal distribution of annihilation 
rates α(λ), λ = 1/τ, for some, if not all, annihilation 
channels and calculates the mass centre and width of 
this distribution. 

In amorphous polymers Ps is trapped and 
confined by holes of the free volume (Anderson 
localisation, see Fig. 3). The hole size can be 
estimated using a simple quantum mechanical model 
which assumes the Ps to be confined in a spherical 
potential well of radius r = rh + δr and an infinite 
depth where rh is the radius of the hole. The Ps has a 
spatial overlap with molecules within a layer δr of 
the potential wall. This provides a simple but very 
useful relationship between the o-Ps pick-off 
annihilation rate and the hole radius rh: 
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where 2 ns-1 is the spin averaged Ps annihilation rate in dense electron systems and δr is 
empirically derived to be 0.166 nm [7,8]. Similar formulae were derived for cylindrical or 

cubical holes [12]. Frequently, the hole size is 
expressed as mean free path of Ps inside the 
hole. Typically o-Ps lifetimes and holes sizes 
are τpo = τ3 = 1 - 5 ns and rh = 2 - 4 Å (vh = 
4πrh

3/3 = 50 - 200 Å3). In polymer crystals Ps 
is sometimes formed in interstitial free 
volumes. In this case, the o-Ps pick-off lifetime 
reflects the packing coefficient C of the 
crystals (C ≈ 0.70, τ3 ≈ 1 ns). The Ps yield in 
crystals is usually lower than in the amorphous 
phase or can also completely disappear. Based 

on eq. (7) the mean size of the free-volume holes may be estimated as a function of 
temperature, pressure, the content of plasticizer, humidity, or the composition of copolymers 
and blends etc. The lower detection limit of the method is estimated to be rh ≈ 1.5 Å (vh ≈ 20 
Å3), while in mesoscopic systems τ3 values of 100 ns corresponding to rh ≈ 10 nm [12] have 
been observed. 
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Figure 2. Positron lifetime spectra in 
CR39-copolymers with 0 and 75 % of 

comonomer [14]. 
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Figure 3. Ps localisation and annihilation in 
a hole of the (excess) free volume. 



 
3. Application to Polymers 
 
3.1 The Specific Total, Occupied and Free Volume 
 

PALS is able to deliver the mean size and size distribution of free volume holes, but 
not the number density and volume fraction [13-18]. Frequently the o-Ps intensity I3 is 
assumed to be linearly related to the hole density. I3, however, shows the Ps yield P, I3 = 
3P/4, which is affected by various processes such as e+/e- trapping by shallow traps and the 
mobilities of these particles [7,8]. The number density and volume fraction of holes can be 
obtained, however, from a comparison of PALS with the macroscopic volume obtained from 
pressure-volume-temperature (PVT) experiments, in particular when these are analysed with 
the Simha-Somcynsky equation of state (S-S eos) [14-17]. This theory assumes a (hexagonal) 
lattice with an occupation y of less than 1. The hole fraction, h = 1 - y = h(T/T*, V/V*, P/P*), 
(T*, V* and P* are scaling parameters) is calculated from an equation obtained from the 
pressure relation P = -(∂F/∂V)T, where F = F(V, T, h) is the (Helmholtz) configurational free 
energy. h can be identified with the fractional (excess) free volume defined previously, f  = 
Vf/V ≡ h [19,20]. 

We have determined the specific volume from PVT experiments using a fully 
automated GNOMIX high-pressure (mercury) dilatometer [15]. Fig. 4 shows the specific 
volume, V, and the specific occupied volume, Vocc = (1 - h)V, for polystyrene (PS) together 

with the specific free volume, Vf = hV = V - Vocc as example. Vocc includes the interstitial free 
volume, Vif, Vocc = VW + Vfi, and has at Tg a value of Vocc = 1.45VW that corresponds well to 
volume typically for crystalline polymers. The coefficient of thermal expansion of the 
occupied volume, changes at Tg from αocc,g = 1.0×10-4 K-1 (T < Tg) to αocc,r  = 0.2×10-4 K-1 (T 
> Tg). This change seems to be unexpected, but is confirmed by the PALS data (Fig. 6). 

As can be observed in Fig. 4, the specific volume shows an increase in its coefficient 
of thermal expansion at Tg from αg = 2.25×10-4 K-1 to αr = 6.36×10-4 K-1. The corresponding 
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Figure 5. The mean hole volume vh(τ3)
and its dispersion (±σ) of PS as a 
function of temperature T. Above Tk the 
o-Ps lifetime τ3 and thus vh does not 
anymore represent correctly the true 
hole volume (see text). 
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increase for the free volume is from αfg = 1.8×10-3 K-1 to αfr = 8.4×10-3 K-1. The fractional 
free volume at Tg amounts to f ≡ h = 0.070.  

Fig. 5 shows the mean hole volume, vh, calculated from the PALS results via eq. (7). 
Together with vh(τ3), the boundaries vh(τ3 - σ3) and vh(τ3 + σ3) are shown where σ3 is the 
dispersion (standard deviation) of the lifetime distribution obtained from the LT9.0 analysis. 
Similarly to Vf, the mean volume vh shows a strong increase in its expansivity at Tg. At low 
temperatures, o-Ps is trapped in local free volumes within the glassy matrix and τ3, and hence 
vh, show the mean size of static holes. The averaging occurs over the hole sizes and shapes. 
The slight increase of vh with temperature mirrors the thermal expansion of free volume in the 
glass due to the anharmonicity of molecular vibrations and local motions in the vicinity the 
holes. In the rubbery phase the molecular and segmental motions increase rapidly resulting in 
a steep rise in the hole size with temperature. Now vh represents an average value of the local 
free volumes whose size and shape fluctuate in space and time. The o-Ps lifetime mirrors the 
mean geometrical hole size as long as the structural relaxation times do not reach the order of 
magnitude of this lifetime.  

The coefficients of thermal expansion of hole volume were estimated to be αhg =  
(1.95 ± 0.2)×10-3 K-1 (T < Tg) and αhr =  (9.5 ±0.08) ×10-3 K-1 (T > Tg), the hole volume at Tg 
is vhg = (121 ± 2) Å3. The αhr value is larger by a factor of ∼15 than of the macroscopic 
coefficient of thermal expansion, αr. From this a free volume fraction of f ≈ αhr/αr = 1/15 = 
0.07 follows. A more accurate estimate of f and of the mean number of holes per mass unit, 
Nh', may be obtained from one of the relations ([14], see also [15-18]),  
 
 Vf = N h' vh           (8) 
 
 V = Vocc +  N h' vh.        (9) 
 
Fig. 6 shows the specific total volume, V, and specific free volume, Vf  = hV, which were 

plotted vs. the hole volume vh. One 
observes that both V and Vf  follow 
linear functions for the data from 
above Tg with slopes of Nh' = 0.55 
and 0.53±0.02×1021 g-1. The values 
correspond to a hole volume 
density of Nh = 0.55 nm-3. We note 
that in case of the specific volume 
curves the values below Tg are 
increasingly lower with decreasing 
temperatures than predicted by the 
extrapolation of the lines from 
above Tg. This deviation is due to 
the abrupt increase in the 
coefficient of thermal expansion of 
the occupied volume observed in 
Fig. 4. Both estimates for Nh', from 
eqs. (8) and (9), agree almost 
completely.  

The constancy of the hole density, Nh', is a surprising and interesting result confirmed 
by all other works in the literature related to this question [14-18]. It means that the whole 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Plots of V and Vf = hV, vs. the mean hole 
volume vh for PS. The lines are linear fits to the data 
above Tg and below Tk (open symbols). The filled 
symbols are data from below Tg. 
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segmental motion above Tg which is allowed by the holes but creates also new holes is 
mirrored in the mean size (and size distribution) of the local free volumes but not in their 
mean number density. Due to this, the polymer dynamics as seen, for example, via the 
polymer viscosity, is observed to be clearly related to the hole size detected by PALS. The 
same was found to be true for the diffusion of small guest molecules (gases and ions [21,22]) 
in polymers. 
 At this point we remark that the S-S eos uses a picture which differs from the structure 
of the free volume observed by PALS. o-Ps detects individual holes which have a size 
distributions around a mean value being typically  vh = 100 - 200 Å3  and a constant hole 
density Nh'. The S-S model, on the other hand, assumes uniform cells [19,20] of a size 
estimated for PS to be ω = 60 Å3. The increase in free volume comes mainly from the creation 
of new empty cells, their number density, Nh

SS, can be described by an Arrhenius law. In 
estimation of Nh' we assumed Vf = Nh

SSω = Nh'vh. The agreement of this value with the hole 
number estimated from the empirical relation V = Vocc + Nh'vh shows that the hole fraction and 
the specific free volume are correctly estimated by the S-S eos.   

Some authors have attempted to overcome this discrepancy in the modelling by 
assuming that the hole probed by o-Ps represents a cluster of the unoccupied cells described 
by the S-S eos [5]. The mean hole volume at room temperature corresponds to vh/ω ≈ 1.7 
cells, this number increases at 200 °C to 3.3. Due to free volume fluctuation, the number 
varies at 200 °C between 1 and 5 (± 3σ). Further research may resolve this question.  
 
3.2. Hole Size Distribution and Thermal Volume Fluctuation. 
 

With eq. (7) and the distribution of the annihilation rates, α(λ), obtained from the 
analysis of lifetime spectra using the routine LT, for example, the hole radius probability 
distribution, n(rh) = -α(λ)dλ3/drh (λ3 = λpo), can be calculated via [8]  
 

n(rh) = -3.32{cos[2πrh/(rh + δr)] - 1} α(λ)/(rh + δr)2     (10) 
 

From eq. (10) the fractional hole volume distribution, g(vh) = n(rh)/4πrh
2, and the 

number density hole volume distribution, gn(vh) = g(vh)/vh, can be calculated. The n(rh) and 
gn(vh) distributions are shown in Fig. 7 for PS (to be published). The n(rh)-distributions can be 
approximated by a Gaussian, while gn(vh) shows a shape like a Γ-function. The distributions 
are normalised to the fractional hole free volume f = 1 where ∫g(vh)dvh = ∫vhgn(vh)dvh = 
<vh><Nh> = f (integration from 0 to ∞). Free volume distributions are frequently assumed to 
follow a Gaussian or a binomial distribution [20] in agreement with our results. The gn(vh) of 
Fig. 7 seems, however, to contradict the exponential distribution function of the Cohen and 
Turnbull model, eq. (2). We remark however, that the right wing tail of the gn(vh) distribution 
may be fitted by an exponential function. When n(rh) is described by Gaussian with a larger 
width, gn(vh) will show an exponential-like shape. The discrepancy is usually explained by the 
lower detection threshold of PALS, estimated to be ∼20 Å3. In ref. [6] the o-Ps lifetime 
distribution is calculated employing simulations of the amorphous polymer structure.  

For comparison with theory we have calculated from the PALS data the root-mean-
square fluctuation in the fractional free volume which we define by 
 

δfrms =  (<δVf
2>/<V>2)1/2 ,  where <δVf

2> = <Nh'>2 <δvh
2>.  (11) 

 



The left hand side of eq. (11) assumes that the fluctuation in Nh' can be neglected compared 
with the fluctuation in the hole volume vh. We have calculated <δvh

2> as the variance of the 
gn(vh) distribution. Figure 8 shows that δfrms = (<Nh'>/<V>)<δvh

2>1/2 varies with the 
temperature very similarly to <vh> and <Vf>. In thermal equilibrium, above Tg, the spatial 
fluctuation of the free volume is identical with the time fluctuation. PALS detects these 
fluctuations as a "static" hole size distribution as long as the relaxation times for segmental 
motion are smaller than the o-Ps lifetime. Below Tg most of the fluctuations are "frozen-in" 
and quasi-static. 

Following conventional thermodynamics  the mean square fluctuation of the volume V 
about its mean value <V> at equilibrium is related to the second derivative of the Helmholtz 
free energy F via <δV2> = -kBT/(d2F/dV2)<V> [20]. With (d2F/dV2)<V>  = -(dP/dV)<V> one 
obtains the well know relation <δV2> = kBT κ <V> and, assuming that the fluctuation in the 
free and occupied volume are independent,  
 

<δVf
2> = kBT κf <Vf> = kBT κf* <V>      (12) 

 
where κf = -(1/Vf)[dVf/dP]T is the isothermal compressibility of the free volume and κf* = -
(1/V)[dVf/dP]T the corresponding fractional compressibility. Frequently κf* is approximated 
by κf* =  ∆κ =  κr - κg. We have calculated κf* from the pressure dependence of the free 

volume, Vf(T,P). An equation similar to eq. (12) has been used to discuss density fluctuations 
observed by X-ray small angle scattering.     

Thermal fluctuations are considered in a subvolume <V> embedded in, and being in 
thermodynamic contact with, a much larger one [20]. Fig. 8 shows the fit of eq. (12) to the 
PALS experiments above Tg, which delivers <V> = 2.15 (± 0.1) nm3. This value corresponds 
to 13 monomer units and is reasonably close to the value of 1/Nh = 1.8 nm3, the volume which 
contains one hole. Below Tg eq. (12) delivers data clearly below the PALS experiments since 
although eq. (12) can be used as an approximation of the volume fluctuation below Tg, it 
describes only the dynamic contribution of the disorder while the PALS data are dominated 
by the static hole size distribution. Fig. 8 shows also calculations using a theory of Robertson 
[20] which is based on the S-S eos, assuming <V> = 1.05 nm3. Obviously this theory 
describes well the static free volume distribution but not free volume fluctuations above Tg. 
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3.3 The Free Volume and the Dynamic Heterogeneity in Glass-forming Liquids 
 

As shown in Fig. 5, at a higher, critical "knee" temperature Tk = 180 °C, the increase 
of the hole volume with the temperature levels off. This effect is not observed in the 
macroscopic volume and may be considered therefore as being due to the Ps probe itself.  The 
o-Ps lifetime and the hole size calculated from this no longer mirror the true mean hole size. 
We observed also a distinct decrease in the width of the hole size distribution above Tk [23]. 
Possible reasons for this behaviour could be: (i) The existence of Ps in self-trapped "cage" 
states in the soft matrix of the polymer (Ps bubble). (ii) Thermally exited detrapping of Ps 
from free volume holes. (iii) The structural relaxation time reaches the order of the o-Ps 
lifetime of ∼ 2 ns leading to a smearing of holes during the life of o-Ps.  

Another interpretation is the disappearance of the dynamic and structural 
heterogeneity of the glass-forming system and transition to a homogeneous liquid. The latter 
interpretation is of special interest since it relates the free volume properties to a change in the 
polymer dynamics. Ngai et al. [24] showed for low-molecular materials that at a temperature 
of  ≈ 1.2 Tg (for "fragile" glass forming liquids) to ≈1.5 Tg (for "stronger" glasses) the mean 
square atomic displacements <u2> of motions with relaxation times shorter than 1 ns increase 
dramatically. At the same temperatures the PALS "knee" appeared in these materials.  

Possibly, the local free volume detected by PALS in polymers may be identified with 
the high mobility regions (Glarum-Levey defect) inside a co-operatively rearranging regions 
(CRR) [10]. The typical hole size (vh ≈ 0.1 nm3) and the volume which contains one hole, 
1/Nh = 1 to 5 nm3  [14-18], seem to agree with this interpretation. There are, however, two 
observations which contradict this interpretation. First, the hole density and therefore the 
value 1/Nh  are found to be independent on temperature [13-18], while the fluctuation theory 
estimates its increase when approaching Tg from T+ [10]. Second, PALS studies of alkyl 
methacrylates (to be published) delivered Tk values which are distinctly higher than the T+ 
values which show a systematic lowering with increasing length of the alkyl side chain [25]. 
Thus the interpretation of the PALS "knee" as being caused by structural relaxation times in 
the order of the o-Ps lifetime seem likely. Further research may solve this question. 
 
3.4 Free Volume and Mobility 
 
 The relation between the free volume and the polymer mobility is frequently studied 
by measuring the diffusion properties of small molecules in polymers. Extensive studies of 
gas diffusion in comparison with PALS can be found in several papers. Recently, we have 
studied the ionic conduction in ethylene glycol [21] and later in ethylene oxide based polymer 
(PEO) electrolytes which exhibit single ion (cation - Li+ or anion - ClO4

-), and mixed ion 
(from the dissociation of LiClO4 salt) conduction by employing PALS and conductivity (σ) 
measurements in the temperature range between 170 and 370K [22]. The conductivity is 
visualised as being due to a combination of ion/polymer co-operative motion with the 
occasional independent ion movements; the time scale for the latter is expected to be much 
shorter than for polymer relaxation. 
 We found that the hole volume vh shows a typical glass-transition behaviour for all of 
the samples. However, indications for two relaxation processes separated in temperature are 
found. The lower one is attributed to the motion of “free” polymer segments, and the higher 
one, appearing only in the electrolytes, to segments solvating cations. A discrepancy between 
the Tg estimated from PALS and DSC, Tg

DSC = Tg
PALS - (25 to 27) K in case of polymer 



electrolytes, can be resolved assuming that the DSC responds mainly on the free segmental 
motion but PALS on the segmental motion of co-ordinated polymer chains. 
We found evidence for the validity of (i) the linear expansion of local free volume from 
PALS, eq. (4), (ii) the Vogel-Tammann-Fulcher (VTF) law for the ionic conductivity σ, eq. 
(5), and (iii) the Cohen-Turnbull equation  that relates σ to the local free volume vh , eq. (3).  
These were found to be valid in the temperature range above the end (or freezing) temperature 
of the glass transition, Tge ≈ 1.06 Tg

PALS. Fig. 9 shows the Cohen-Turnbull plots (log σ vs. 
1/vh) for the Li+ conduction. Deviations from eq. (3) are observed below Tge and above Tk 
where PALS does not detect the true hole size. From VTF fits, eq. (5), to σ we obtained a 
Vogel temperature of T0 ≈ Tg

DSC = Tg
PALS - (25 to 27) K  and pseudo-activation energies of B 

= 3.7 - 5.7 kJ/mol. The critical temperatures at which the extrapolated conductivity (T0, Vogel 
temperature) and the free volume 
vh(T0') disappear, agree each with 
the other within the error limits. We 
also observed such agreement when 
comparing T0' with the Vogel 
temperature T0 of the segmental (α-) 
relaxation for PS and atactic 
polypropylene. We could also 
confirm the relation B/R = 
(γv*/vmαf*) (see eqs. 3 - 5, [21, 22]). 
From the Cohen-Turnbull plots 
critical hole volumes γv*, required 
for an ion transportation, of 1.20 
nm3 (RPEO-Li), 1.09 nm3 (RPEO-
ClO4), 1.00 nm3 (RPEO-LiClO4) [22] 
and 0.9 nm3 (ethylene glycol - 
LiClO4 [21]) were estimated. From 
this it was concluded that γv* 
represents the critical free volume 
for the segmental motion with which 
the ion transport is associated. 

Surprisingly, there are no clear effects that could be attributed to the different type of moving 
ions. This may be considered as an indication that each type of ionic conductivity is 
associated with the same segmental mobility independent of the specific interaction with the 
polar polymer chains. We remark that the critical volumes γv* are far in the right wing of the 
hole size distributions. This shows again that only the largest holes of the excess free volume 
contribute to the mobility of chain segments or diffusion of guest molecules in amorphous 
polymers. Below Tge

PALS the conductivity is larger than predicted by the VTF relation [22] 
which can be described by an Arrhenius-type activation energy. 
 
3.5. Free Volume and Rigid and Mobile Amorphous Phases in Semicrystalline Polymers  
 
Recently we have studied the thermal expansion of free volume holes in semicrystalline 
ethylene/1-octene copolymers (P(E-co-O)) with a content of 1-octene comonomer between 7 
and 24 wt.-% and a crystallinity Xc (from WAXS) between 50 % and 10 % and a high-density 
polyethylene (HDPE, Xc = 70 %) [26]. The thermal expansion of the hole volume, vh, in 
HDPE could be fitted by a parabola and shows no indication of the glass transition (Fig. 10). 
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Figure 9. Variation of σT0.5 with the reciprocal local 
free volume, 1/vh, estimated from PALS, in RPEO-Li 
(Cohen-Turnbull fit). Open and filled circles: vh as 
obtained from the experiment, open circles: used from 
these for the CT fit (dash-dotted line); crosses: vh as 
obtained from extrapolation of the linear fit in the 
range Tge < T < Tk. [22] 



From this we concluded that the whole amorphous phase is constrained by the crystals and 
immobile, β = 1 - Xc = 30 %. The copolymers show an increasing thermal expansion above Tg 
which we attribute to an increasing fraction of mobile amorphous phase. By fitting a parabola 
to the data below Tg and subtracting this from the data above Tg the fraction γ of the mobile 
amorphous phases can be estimated, Xc + β + γ = 1. Fig. 11 shows how these fractions vary as 
a function of the content of 1-octene comonomer. 

 
4. Conclusions 
 

Positron annihilation is a unique technique for studying the microstructure of 
amorphous materials. Employing the lifetime spectroscopy (PALS) the size and size 
distribution of subnanometer size local free volumes (holes) may be studied. In combination 
with macroscopic volume data the fractional free volume and the number of holes may be 
estimated. Several examples for the application to polymers have been given. Close relations 
between the hole size and the polymer dynamics have been observed.  

There are several further applications of the method such as (i) the chemical 
surroundings of holes sensed by DBAR [27], (ii) the hole anisotropy in highly crystalline 
fibres detected by ACAR [28], (iii) interdiffusion in demixed polymer blends [29], (iv) 
humidity sorption into free volume holes in polyimides [30] and polyamide [31], and (v) the 
study of surface and near-surface properties [32] using slow, monoenergetic positron beams 
[9]. Employing slow positron beams the change of the glass transition temperature at the 
surface of polymers and in confined geometries has been observed [8]. 
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