
1 Molecular weight distribution analysis –1. Molecular weight distribution analysis 
SEC MALLs and AUC

2. Conformation and flexibility – Viscometry, 
AUC Light scatteringAUC, Light scattering



L t 5Lecture 5 
Analytical Ultracentrifugation II: interactions

Steve Harding



Free solution, no immobilisation, columns, membranes etc. 
needed.  Self-association and hetero-interactions, 
stoichiometry reversibility and strength (K K or ΔGo)stoichiometry, reversibility and strength (Keq, Kd or ΔGo)

• Use of sedimentation equilibrium and sedimentation velocity

• Self association or “A-A” interactions, heterologous or “A-B”Self association or A A  interactions, heterologous or A B  
interactions

• How thermodynamic non-ideality problems are now dealt with y y p
experimentally & computationally (COVOL)

• Polysaccharide interactions, complex formation and mucoadhesion



S lf i ti A + A AASelf-association:   A + A          AA

Association constant Keq = [AA]/[A]2 - ml/mol, μM-1, M-1

Dissociation constant Kd = [A]2/[AA]  - mol/ml, μM, M

Heterologous association:   A + B          AB

Association constant Keq = [AB]/[A][B] - ml/mol, μM-1, M-1

Di i ti t t K [A][B]/[AB] l/ l M MDissociation constant Kd = [A][B]/[AB]  - mol/ml, μM, M

ΔGo = RTln Keq - J/mol

Keq also given the symbol K2 or Ka



Interaction strengths commonly represented by Kd values        

Strong interactions: Kd < 1μM

Medium  interactions: 1μM < Kd < 20μM

W k i t ti K > 20 MWeak interactions: Kd > 20μM

Very weak interactions: Kd > 100μM

NB this applies to reversible interactionspp
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Carbohydrate induced dimerisation of a protein 
M ~ 17.4kDa, Kd ~ (120)μM

MSTAR analysis

M~30000

M~17400

cellulohexaose

CBM29-2/E78R



Sedimentation equilibrium - Electron Transfer Flavoprotein-
heterodimer, M ~ 63kDa, Kd ~ (1.5+0.1)μM, , d ( )μ

European Biophys. J. (1997)

1. Mw app analysis vs loading conc - stoichiometry.1. Mw,app analysis vs loading conc stoichiometry.

2.Mw,app (r) analysis - reversibility 3. Fitting the concentration distribution – Kd 



Sedimentation equilibrium - Electron Transfer Flavoprotein-
heterodimer, M ~ 63kDa, Kd ~ (1.5+0.1)μM, , d ( )μ

1. Mw app analysis vs loading conc - stoichiometry. Blue chain: 29kDa; Purple chain: 34kDa1. Mw,app analysis vs loading conc stoichiometry. ; p

2.Mw,app (r) analysis - reversibility 3. Fitting the concentration distribution – Kd 
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B = f(excluded volume charge)B  f(excluded volume, charge)
Ignoring B leads to incorrect Kd

Choice: 
1.Ignore (valid only for strong interactions)
2 Calculate it on the basis of excluded volume theory2.Calculate it on the basis of excluded volume theory 



B = f(excluded volume charge)B = f(excluded volume, charge)
Ignoring B leads to incorrect Kd

Choice: 
1.Ignore (valid only for strong interactions)
2 Calculate it on the basis of excluded volume theory2.Calculate it on the basis of excluded volume theory 



B = f(excluded volume charge)B = f(excluded volume, charge)
Ignoring B leads to incorrect Kd

Choice: 
1.Ignore (valid only for strong interactions)
2 Calculate it on the basis of excluded volume theory2.Calculate it on the basis of excluded volume theory 

theory quite complicated! … but built into a simple to use 
program called COVOLprogram called COVOL



B = f(excluded volume charge)B = f(excluded volume, charge)
Ignoring B leads to incorrect Kd

Choice: 
1.Ignore (valid only for strong interactions)
2 Calculate it on the basis of excluded volume theory2.Calculate it on the basis of excluded volume theory 

theory quite complicated! … but built into a simple to use 
program called COVOLprogram called COVOL

COVOL – calculates B 
from size, shape and 
charge



CD2-CD48 cell recognition heterodimer: a weak interaction

2BM (from COVOL programme)  = 10.4 ml/g

Kd = 100+30 μM

Kd(from SPR) = 70-90 μM (Anton van der Merwe)

European Biophys. J. (1997)
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Glue Protein

Direction of 
sedimentation

0.8mg/ml                                 
40,000 rpm, Scan every 10 
min

s20,w = 2.3 
S dbSvedbergs

Radial position (cm)

Biochemistry (1998)



Glue Protein + Mucin

Glue protein: 0.4mg/ml  
M i 0 1 / lMucin: 0.1mg/ml 
(invisible)      2000 rpm, Scan every 

10min

s20 w ~ 7,000S20,w ,

Biochemistry (1998)
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Hydrodynamic 
non ideality

frictional 
ratio

Sedimentation Velocity Sedimentation Equilibriumc(r,t) = f(f/fo M, ks, K, r, t)

non-ideality
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- numerical solutions to Lamm equation (1923)
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s-distribution: Freeze-thaw bioprocessed IgG4
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so
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- nb single peak does not necessarily mean single 
solute! (Gilbert & Jenkins 1958)
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Sedimentation Velocity Sedimentation EquilibriumChoice of software:y q

Centrifugal force

Choice of software: 
1.SEDFIT (P. Schuck): analysis 
of c(r,t) in terms of 
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Top view, sector of
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stoichiometry, reversibility

2.SC-ISOTHERM (A. Rowe et 
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Demonstration of a protein switch: homodimerisation to heterodimerisation:p

Absence of apoBCCP87: homo-
dimerisation

metabolism                                         transcription repression

Top: fit by SEDFIT analysisTop: fit by SEDFIT analysis
Bottom: residuals



Demonstration of a protein switch: homodimerisation to heterodimerisation:p

Absence of apoBCCP87: homo-
dimerisationdimerisation

dimer

monomer

metabolism                                         transcription repression

…as concentration increases, 
proportion of dimers 
increases



Demonstration of a protein switch: homodimerisation to heterodimerisation:p

Absence of apoBCCP87: 
homo dimerisationhomo-dimerisation

metabolism                                         transcription repression

SC-Isotherm analysis:
K (10+1) MKd ~ (10+1) μM 



Demonstration of a protein switch: homodimerisation to heterodimerisation:p

Absence of apoBCCP87: 
homo dimerisationhomo-dimerisation

metabolism                                         transcription repression

SC-Isotherm analysis:
K (10+1) M

SEDANAL analysis:
koff = (2.7+0.5)x10-4s-1

Kd ~ (10+1) μM 

anything faster than 0.01 per second is considered as 
instantaneous.   Too slow – anything slower than 0.0001 
per second won’t distort the boundary enough



Demonstration of a protein switch: homodimerisation to heterodimerisation:p

Addition of apoBCCP87: switch 
from homo to hetero dimerisationfrom homo to hetero-dimerisation

+0μM

+20μM

+5μM

metabolism                                         transcription repression

Kd (hetero-dimerisation) 
~(2.4+0.4) μM



SC-ISOTHERM  analysis CD2:CD48 



Conformation analysis in associating systems

e.g. take the case of a dimerising globular protein system

or

??



Neurophysin dimerises side by side  - triaxial contour mapping (ELLIPS3)

Λ Λ

b/c b/c

dimer

b/c

( /b) 2 5 (b/ ) 3

monomer

(a/b)= 4, (b/c)= 1 (a/b)=2.5, (b/c)= 3R
R

a/b
a/ba/b

a>b>c: triaxial semi-axes (sphere a=b=c)
R: hydration independent function from viscosity & sedimentation 
Λ:          “                  “                “          “    viscosity & fluorescence depolarisation



Neurophysin dimerises side by side  - triaxial contour mapping (ELLIPS3)

Λ Λ

b/c b/c

dimer

b/c

( /b) 2 5 (b/ ) 3

monomer

(a/b)= 4, (b/c)= 1 (a/b)=2.5, (b/c)= 3R
R

a/b
a/ba/b

a>b>c: triaxial semi-axes (sphere a=b=c)
R: hydration independent function from viscosity & sedimentation 
Λ:          “                  “                “          “    viscosity & fluorescence depolaristion & viscosity



and is bioprocessing-induced aggregation in antibodies linked to a 
conformation change in the monomer?…

Freeze-thaw bioprocessed IgG4

Monomer, s=7.0S

Requires measurement of properties of 
th i th fthe monomer in the presence of 
aggregates:

s, [η] (see Lecture 1) and other 
ti d ll d i SOLPROproperties, modelled using SOLPRO 

(see Lecture 4) – an active area for 
current research!



Polysaccharide interactions

• Mucoadhesive interactions - chitosan

• Weak dimerisation – arabinoxylanWeak dimerisation arabinoxylan

• Self association of amino-celluloses



Mucoadhesive interactions - chitosan

1 Image by atomic force microscopy 2 Sedimentation velocity result

Sedimentation 

1. Image by atomic force microscopy 2. Sedimentation velocity result 

coefficient 
so

20,w ~ 1S

Deacon et al, Biochem. J. 2000



Chitosan – mucin complexp

1 Image by atomic force microscopy 2 Sedimentation velocity result

Sedimentation 

1. Image by atomic force microscopy 2. Sedimentation velocity result 

coefficient 
so

20 w ~ 2000S20,w

Deacon et al, Biochem. J. 2000



Chitosan – mucin complexp

1 Image by atomic force microscopy 2 Sedimentation velocity result

Sedimentation 

1. Image by atomic force microscopy 2. Sedimentation velocity result 

coefficient 
so

20 w ~ 2000S20,w

Deacon et al, Biochem. J. 2000

very strong, irreversible interaction



A very weak carbohydrate interaction: y y
arabinoxylan dimerisation

Expected behaviour for aExpected behaviour for a 
non-interacting system

very weak, reversible interaction
Patel et al, Biophys. J. 2007



A very weak carbohydrate interaction: y y
arabinoxylan dimerisation

Expected behaviour for a

But it gives a +ve slope

Expected behaviour for a 
non-interacting system

very weak, reversible interaction
Patel et al, Biophys. J. 2007



A very weak carbohydrate interaction: y y
arabinoxylan dimerisation

very weak, reversible interaction Patel et al, Biophys. J. 2007



Protein-like self-association in amino-celluloses!

ll M 20kDall M1 ~ 20kDa

1.7S 2.3S
3.4S

4 3S4.3S

5.5S

Seems to associate into 
dimers, trimers, tetramers 
and pentamers, and with 
b 0 7 lik t ib ~0.7, more like a protein 
than a polysaccharide 
(0.2-0.5)

s ~ Mb Daus et al, (mss in preparation)



Summary

• free solution technique for Kd's from <1μM to >100μM, and 
irreversible aggregation (e.g. antibodies) and complex 
formation phenomena (e.g. mucoadhesive complexes)

• major advances in both sedimentation velocity and 
equilibrium for stoichiometry, reversibility and strengths, self 
and hetero associations and conformation analysisand hetero-associations and conformation analysis

• for reversible associations, complications through non-
ideality often need to be considered – COVOL for predictionideality, often need to be considered – COVOL, for prediction 
of B.
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