From Sticky Mucus to Probing our Past: Aspects and problems of the Biotechnological use of Macromolecules

Datum/Zeit	Veranstaltungsort	Thema
Mi, 30.06.2010	SR 309	Macromolecules as BioPharma
12.15-13.45	Carl-Zeiss-Str. 3	mucoadhesives
Do, 01.07.2010 08.15-09.45	SR 308 Carl-Zeiss-Str. 3	Macromolecules as vaccines
Do, 01.07.2010	HS Haus 1	Stability in response to Bioprocessing I.
13.15-14.45	August-Bebel-Str. 2	Thermal Processing, D, z and F values
Fr, 02.07.2010	HS Haus 1	Stability in response to Bioprocessing
08.15-09.45	August-Bebel-Str. 2	II: Irradiation and freezing
Fr, 02.07.2010	SR 307	The use of non-recombining parts of the
12.15-13.45	Carl-Zeiss-Str. 3	Y-chromosomal DNA and mitochondrial
		DNA as a probe into our past

Macromolecules as Vaccines

Steve Harding

Vaccination

- Vaccine produces immunity
- Response similar to natural infection but without risk of disease
- Certain bacteria with capsular polysaccharide particularly dangerous
- Design vaccines based on capsular polysaccharides

Advantages of polysaccharide vaccines compared to antibiotics

- A vaccine prevents disease rather than cures it, so toxic effects of infection, such as release of endotoxin, do not occur
- Vaccination of infants is less dependent on access to a medical expertise and hospital timelines are are much less critical
- Vaccination can be carried out by partly trained staff important in developing countries
- For most bacteria, evasion of vaccine-based protection is much more difficult than development of antibiotic resistance
- Reduction of bacterial carriage reduces transmission of disease, so that even unvaccinated children are less likely to be affected.

Disadvantages of polysaccharide vaccines compared to antibiotics

- The vaccine protects against only a single serotype/serogroup, so that multicomponent or "multivalent" vaccines are usually required
- The pattern of disease may change, with novel serotypes or serogroups becoming important. New vaccines are then required
- The duration of protection may be limited, and older children for example may not be protected
- Repeated immunisation with a polysaccharide can lead to reduced responsiveness and lower antibody levels
- Not all polysaccharides can be used to make vaccines e.g. meningococcal Group B

S. Sorensen et al (1988), Infect.Immun. 56, 1890-1896

Some dangerous capsular bacteria

- Streptococcus pneumoniae
- Group B Streptococcus
- Neisseria meningitidis "Meningococcus"
- Haemophilus influenzae

Capsules consist of high molecular weight polysaccharides

Capsular polysaccharides are attached to the surface of the bacteria and not free to move away.

Gram positive bacteria

Gram positive bacteria

- Streptococcus pneumoniae
- Group A Streptococcus
- Group B Streptococcus
- Staphylococcus aureus

Staphylococcus aureus: image from Wikopedia article

Capsular polysaccharides are attached to the surface of the bacteria and not free to move away.

Gram negative bacteria

Inside the cell

http://en.wikipedia.org/wiki/Gram-negative

Gram negative bacteria

- Haemophilus influenzae
- Neisseria meningitidis
- Neisseria gonorrhoae
- Salmonella entericus serovar Typhi
- Shigella flexneri
- Shigella
- Shigella
- Pseudomonas aeruginosa

Electron micrograph of Haemophilus influenzae

150

Role of capsular polysaccharides in nature

•Modulation of flow of nutrients to bacterial cell surface

•Prevention of dessication by maintaining an easily hydrated layer close to the bacterial surface

•Provides a suitable matrix to allow attachment to surfaces

Role of capsular polysaccharides in infection

- •Protects cell surface components from host immune responses (inate and acquired)
- •Provides a "non-threatening" target for deposition of complement, which does not lead to cell damage
- •When phagocytosis does occur, the capsule helps protect against host cell-mediated killing through activated oxidative species

Structures of capsular polysaccharides:

•High molecular weight (50 000 to >1 000 000Da) with repeating structure

•Repeat unit of up to ~10 sugars – in most cases the repeat unit is pre-assembled and polymerised

- •Mostly –vely charged
 - uronic acids
 - sialic acid
 - phosphate groups (in-chain phosphodiester)
 - substituents such as pyruvate ketals

•Some are neutral, some are zwitterionic

Structures of capsular polysaccharides:

- The only stable repeating structure is a helix
- Evidence is that this helix is ill-defined and flexible.
- Arguments continue about existence of well-defined secondary structure
- Epitopes are essentially "primary" – dependent on primary sequence rather than complex folding

A given species can have different capsular polysaccharides, or different "serotypes"

Group B Streptococcus:

Serotype Ia: $\rightarrow 4)\beta D-Glcp-(1\rightarrow 4)\beta D-Galp-(1\rightarrow 3)$ $\uparrow 1$ $\alpha D-NeupNAc-(2\rightarrow 3)\beta D-Galp-(1\rightarrow 4)\beta D-GlcpNAc$

Serotype lb: $\rightarrow 4)\beta D-Glcp-(1\rightarrow 4)\beta D-Galp-(1\rightarrow 3)$ $\alpha D-NeupNAc-(2\rightarrow 3)\beta D-Galp-(1\rightarrow 3)\beta D-GlcpNAc$ A given species can have different polysaccharides, or different "serotypes"

Group B Streptococcus:

Capsular Polysaccharides of Group B Streptococcus

Capsular Polysaccharides of N. meningitidis

NeupNAc: N-acetyl neuraminic acid – a "Sialic acid"

Sialic acid is often the terminal saccharide in membrane glycoproteins

K. Yarema: http://www.bme.jhu.edu/~kjyarema/monosaccharides/

Molecular mimicry in capsular polysaccharides – <u>danger</u> of autoimmune response

- Some bacterial polysaccharides have the same structures as glycans expressed by man, and such polysaccharides have little or no immunogenicity
- Examples include
 - *Neisseria meningitidis* Group B and *E. coli* K1 (same in fetal brain glycoprotein)
 - *E. coli* K5 (same as precursor of heparin)
- Vaccine manufacture from such polysaccharides is difficult
- Such vaccines carry the risk of a dangerous autoimmune response

Encapsulated bacterial serotypes causing Meningitis in Infants

Neisseria meningitidis
Group B Streptococcus
Haemophilus influenzae
Streptococcus pneumoniae
4,6,9,14,18,19,23

~100 strains of *Streptococcus pneuomoniae* have been identified and typed, but <20% cause serious disease such as pneumonia and meningitis

Polyvalent antibodies need to be generated against all the (dangerous) serotypes

... and this is a challenge

But this is only one of the challenges!

- **1. Effectiveness of polysaccharide vaccine**
- 2. Chemical purity of polysaccharide vaccine
- 3. Defined and reproducible molecular weight or molecular weight distribution
- 4. Stability of the preparation

Licensed polysaccharide vaccines

Purified polysaccharide vaccines against three organisms are currently licensed. These are:

- Salmonella enterica Serovar Typhi (was S. typhi)
- Neisseria meningitidis
- •Streptococcus pneumoniae (divalent, tri- and tetravalent)

Polysaccharide vaccine against *Haemophilus influenzae* type b (Hib) was briefly available in the USA <u>before the</u> introduction of better glycoconjugate vaccines in the 1980's

courtesy of Dr. Chris Jones, NIBSC London

Flaws in Efficiency of Polysaccharide Vaccines

- 1. Poor protection in infants (50% of all cases of bacterial meningitis)
- No long lasting immunity: generate IgM response rather than IgG response in infants (Tcell independent, no memory effect) & continued vaccination can lead to low responsiveness

Thus use limited to outbreak control, temporary high risk groups when at risk (military recruits) or every 5 years (typhoid for travellers); for pneumococcal control in elderly, about every 5 years; for endemic typhoid control (every 3 years)

Conjugate polysaccharide vaccines:

Covalent linking to protein carriers to conjugate vaccines

courtesy of Dr. Ian Feavers, NIBSC London

Three structural types of glycoconjugate vaccine – Vesicle-based vaccines (PedVaxHib)

- Produced by random activation of reduced mass polysaccharides, with multiple activations per chain.
- "Carrier protein" is an LPS-depleted mixture of outer membrane proteins
- Vesicle nature of OMPs creates a high mass complex.
- OMPs were chosen to provide complementary immunological detection.
- Hard to make materials on a very large scale.

Polysaccharide Conjugate Vaccines:

- 1. Stimulate T-dependent immunity
- 2. Enhanced antibody production, especially in infants
- 3. Repeat "booster" doses give increased response

An active area for research & development!

Historical timelines for glycoconjugate vaccines

- Discovery that antigens are carbohydrates
- Attempted use of CPS as immunogens
- 1931: Conjugation to protein tried Avery and Goebel
- 1945: First clinical trial of polysaccharide vaccine McLeod
- Introduction of pneumococcal CPS vaccine (1970s)
- Introduction of Hib conjugate vaccine (late 1980s)
- Introduction of meningococcal C conjugate vaccine in UK (late 1990s)
- Licensing of heptavalent pneumococcal conjugate vaccine (2000)
- Introduction of quadrivalent Men A,C,Y,W135 conjugate vaccine in USA (2005)
- Now release of new vaccines by GSK

Meningococcal Conjugate Vaccine

- MenactraTM (Sanofi Pasteur)
- Quadrivalent (serogroups A, C, Y, W-135)
- Approved for persons 11-55 years of age
- Administered by intramuscular injection

Approved by FDA January 2005

Quality control: Characterisation

There are increasing demands for detailed characterisation of biopharmaceutical products, particularly vaccines:

- Physicochemical and immunochemical (serology, immunogenicity) characterisation of components – polysaccharide and carrier protein
- Physicochemical and immunochemical characterisation of the conjugate

Physico-chemical Methods:

- Identity/Structure: NMR, ESMS (protein component)
- Polysaccharide:protein ration (NMR, HPAE)
- Purity: NMR, AUC
- Size distribution: SEC-MALLS, AUC
- Conformation/Flexibility: Viscometry ([η]), AUC (s, M_w), SEC-MALLs (R_g, M_w)
- Stability: NMR, AUC, GPC, viscometry, CD/fluorescence (protein)
- Location of carbohydrate chains (proteolysis-HPLC, ESMS)
- Amount of unconjugated saccharide (chemical assay)

for a glycoconjugate vaccine

<u>Molecular weight Distribution of a very large glycoconjugate</u> vaccine using the f(M) sedimentation velocity method

Two plausible values for the conformational parameter b in s = KM^b used. From Harding, Morris and Abdelhameed (2010) *Macromolecular Bioscience* (in press)

Conformational Flexibility: persistence length L_p determination

Global analysis of hydrodynamic data for a *Streptococcal* polysaccharide: $L_p \sim 6.8$ nm, $M_L \sim 537$ g.mol⁻¹.cm⁻¹: quite flexible!

Conformational zoning plot for 4 different Streptococcal polysaccharides

Based on sedimentation and mass per unit length data. <u>All are Zone C (Semi-flexible).</u> A - extra rigid rod; B – rigid rod; C- semi flexible; Drandom coil; E: globular/branched

Reference

J. Suker, M.J. Corbel, C. Jones, I.M. Feavers and B. Bolgiano, "Standardisation and control of meningococcal C conjugate vaccines", *Expert Review of Vaccines*, 2004, 3, 89-96