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DORMANT SPORE:
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Most bacteria (Salmonella, Listeria etc) can be destroyed by
pasteurisation, but the spore forming ones such as Clostridium
botulinium require severe heat treatment at temperatures
>100°C.

Other bacterial spores may not be pathogenic but can cause
spoilage to the foods

Thermal processing Is the most common form of treatment — but
can also destroy important components of the food from small
vitamins to large proteins and polysaccharides

The goal of Thermal Processing is to make the food safe for the
consumer but minimising the disruption of the food components

So this presentation is about how the Processing
Industry goes about doing this, the criteria used for
safety (based on D, z and F values) and the
consequences for the food components




Theories for the dehydration and heat
resistance of spores

Lewis, Snell & Burr: Contraction of the peptidoglycan cortex is
responsible.

Gould & Dring (Unilever, Bedford UK): high osmotic activity
and expansion of the cortex is responsible, brought about by
the presence of many unshielded acidic groups.

Ellar (Cambridge): dehydration of the protoplast occurs at an
earlier stage by osmotis of the mother cell before the
formationof the cortex & that the rigid cortex maintains the
dehydrated state until the spore is ready to germinate.effects
of infection, such as release of endotoxin, do not occur.

So at the onset of germination Theory 1 predicts an initial large
volume expansion, Theory 2 an initial contraction, Theory 3 no
dramatic change. The relatively rapid method of Dynamic
Light Scattering was used to test for this, and showed that
the Ellar theory was the more likely.
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Fig. |. Rapid mixing plunger device used for introducing
the germinant (cf. run 3 of Fig. 6)
All dimensions are in mm.
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1. Drop in Optical Density (Absorbance) with time shows the progress of germination of
the spores:
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Fig. 5. Plot of absorbance at 580nm as a function of time after addition of L-alanine to 0.02M
Temperature was 35.0°C, spore concentration was 6 x 107/ml. Inset: first-order reaction plot; rate constant,
k,=0.029s"1.
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2. Progress of diffusion coefficient coefficient (a measure of size) with time shows no
dramatic change in volume
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Fig. 6. Plot of z-average apparent diffusion coefficient
Dzpp.) at an angle, 6, of 90°, as a function of time after the
addition of germinant



Kinetics of bacterial (and nutrient) destruction

e Processing industry has to bring contamination down
to a safe level based on agreed criteria but minimising
damage to the nutrients

*Destruction of bacteria (and nutrients) follow a first
order process

» Destruction rate dN/dt is proportional to N, the
number of bacteria remaining

«Similar relations exist for molecular/macromolecular
nutrients, except normally deal with number or weight
concentrations, ¢ (mol/ml) or C (g/ml)
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oH Of FOOD PRODUCTS

Food e H

Lemoas 2:3-2-6 L Ow
Apples 30 - 3-3 RISk
Strawbelries 3.3 - 3:%4

Apricots 37 - 33

Yoghurt 40 — 45 it
White cheese 4.0 — &S RIS
Beer 4. -~ &3

Potatoes 54 - 5.3

- HlaH

Meats 5.5 - 65 RISk
Peas Ll- = 63
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DIFFERENTIALS IN Z- VALUES
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DIFFERENTIALS IN Z- VALUES
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Effect of heat treatment of Polysaccharides

There have been only a few studies on this, and what
data we have suggests that the damage depends very
much on the type of polysaccharide. Consider 3
studies:

* Bradley and Mitchell (1988) — alginate, carboxymethyl
cellulose and k-carrageenan

* Morris et al (1999) - low methoxy pectins

* Morris et al (2002) — high methoxy pectins



Effect of heat treatment of Polysaccharides

1. Study by Bradley and Mitchell (1988)

Carbohydrare Polvmers 9 (1988 257-267

* used specially designed
“slit viscometer” for

The Determination of the Kinetics of Polysaccharide measurement at high
Thermal Degradation using High Temperature Viscosity temperature (up to 100°C)
Measurements

*Alginate, carboxymethyl

T. D. Bradley & J. R. Mitchell CE”U'OSG, K-carrageenan

Food Seience Laboratories, Faculty of Agricultural Science, University of Mottingham,

Sutton Bonington, Nr].uug]‘lh'mmugh, Leics LE12 SRD, UK .Meas u red C h an g e Of
(Received 24 March 1983 accepted 14 April 1988 S peCIfI C VISCOS | ty nsp Wlth
ABSTRACT time at different temps. T

Informarion about the thermal degradation of the polysaccharides eUse Mark-Houwink
sodium alginate, carrageenan and carboxymethyl cellulose has been ) .
obrained from the time dependence of the viscosity at high temperatures relation [1’]] = K'M2 to
measured using a slit viscometer. The viscosity is related to the molecular . .
weight wsing previowsly-published relations between the zero shear 0 btal n mo | ecu | ar wel g ht
specific viscosity and the coil overlap parameter in conjunction with the | n f ormat | on

appropriate Mark-Houwink equarion. It is found thar alginate is much
fess stable than carboxymethvl cellulose and carvageenan. Activation
energies for depolymerisation obtained from Arrhenius plots in the ° i

presence of oxvgen ranged from 50 kl[mol for alginate to 105 k] {mol for Al g Inate muc h l €ss Stab l =
K-carrageenan.




263

Kinetics of polysaccharide thermal degradation
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Fig. 2. Viscosity and reciprocal molecular weight of 1-5% x-carrageenan at 118°C
plotted against time. ®, Viscosity data; O, M, data.




Effect of heat treatment of Polysaccharides

2. Study by Morris et al (1999)

Progr Colloid Polyny Sci (1999) 113:205-208

2 Springer-Verkg 1999
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Elevated-temperature analytical
ultracentrifugation of a low-methoxy

polyuronide

Abstract Relatively little has been
published on the ultracentrifuge be-
haviour of macromolecular solu-
tions at elevated temperature

[ =40 °C). In this study we lool at
the sedimentation velocity behaviour
of one particular food grade poly-
uronide — pectin — from 20 *C o
o0 °C in a specially adapted Model
E wltracentrifuge. Reduced specific
viscosily measurements were also
determined over the same tempera-
ture range. A small decrease in the
reduced viscosity, together with a
similar increase in 5y ... suggests

that the pectin chain is more flexible
at elevated temperatures. but that
the overall molecular integrity
remains intact.

Key words Beckman Model E
adaptation - Viscometry - Size
exclusion chromatography-multi-
angle laser light scattering

* used specially designed
analytical ultracentrifuge
for measurement of sed.
coeffs. and mol. wts. at
temps up to 60°C —
Intrinsic viscosities
measured too

[ ow methoxy pectins

*No clear degradation - s,
[n], M show little change
with temp of measurement
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Effect of heat treatment of Polysaccharides

3. Study by Morris et al (2002)

Carbohydrate
Polymers
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A hydrodynamic study of the depolymerisation of a high methoxy pectin
at elevated temperatures

G.A. Morris®®, T.J. Foster®, S.E. Harding®

NCMH Physical Biochemistry Laboratory, School of Biosciences. University of Naottingham, Sutton Bonington, LEI2 SRD. UK
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Abstract

The hydrodynamic properties (intrinsic viscosity, [n]; infinite dilution sedimentation coefficient, .rguw; weight average molecular weight,
M., and translational frictional ratio, f#fa) of a high methoxy pectin have been evaluated at various temperatures (20-60°C). A reduction in the
value of all four hydrodynamic parameters is indicative of depolymerisation and is in agreement with an earlier study using viscometry
[Axelos, MANV., & Branger, M., (1993). Food Hydrocolloids, 7, 91-102]. The apparent linearity of the Mark — Houwwink plot of log[ 5] vs
log M, suggests that the conformation of the pectin molecule does not change significantly over the temperature range studied. The
evaluation of the Mark -Houwink viscosity exponent (@ = 0L84) indicates a moderately extended structure. This then allows the calculation
of the number of Kuhn statistical lengths per chain from the adapted ‘blob’ theory of Dondos [Dondos A, (2001). Polymer, 42, 897-901]. The
weight average number of Kuhn statistical lengths per chain is reduced from (170 #+ 10) to (125 + 10) when the temperature is increased
fram 20-60°C. This may be of significance as many high methoxy pectins are exposed to high temperatures during processing in both the
food and pharmaceutical industries. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: High methoxy pectin; Depolvmerisation: S-elimination; Elevated temperature analytical ultracentrifugation; Adapted ‘blob” theory; Kuhn
statistical chain length

*High methoxy pectins

In contrast to the result
for LM pectins, clear
degradation - s, [n], M all
decrease with temp of
measurement, although
conformation (from [n] =
K'M2 and s = K" MP
analyses) ~ unaltered

*Thermal stability of
pectins seems to depend
strongly on degree of
esterification



Effect of temperature (of measurement) on a high methoxy pectin

Tempenture (7C) [m] (mlfg) .'F%j‘-,, (5) M, (g'mal) i
20 Mt 2 1.83 = 0.01 156,000 = 10,000 82204
30 BT 4 1.81 = 0.02 144,500 = 10,000 79203
40 2t 4 1.79 £ 0.01 133,000 = 10,000 T5E03
50 3RS 1.77 = 0.02 126,500 = 10,000 74205
6l J21:R 1.7% = 0.01 116,700 = 10,000 6.9 %04
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